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Abstract

Purpose The purpose of this research was to determine
whether combined ultrasound- and sensor-based compress-
ibility and augmented blood flow measures yielded better
results for DVT detection than for the individual measures
alone.

Methods Twenty-six limbs from 19 patients were scanned
using a sensorized ultrasound DVT screening system, and
compressibility and flow measures were obtained at 125
locations. Results from conventional compression ultrasound
examination were used as gold standard, with seven vessels
(four patients) positive for DVT. A classification approach
was used to combine the individual DVT measures per vessel
and generate an optimal feature for every possible combina-
tion of individual measures. Sensitivity and specificity were
calculated for the individual measures and for all combined
measures, as was a usefulness criteria J for measuring class
separability.
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Results Seven optimal combined features were found with
100 % sensitivity and 100 % specificity, with the best com-
bined feature having a J value over two orders of magnitude
greater than the best individual DVT measure.

Conclusions The proposed approach for DVT detection
combines different aspects of thrombus detection in a novel
way generating a quantifiable measure and outperforms any
of the individual measures when used independently. All of
the combined measures included the flow measure as well as
the slope compressibility measure, which uses the magnitude
of the force applied by the ultrasound probe, suggesting that
these measurements provide important information when
characterizing DVT.

Keywords Deep venous thrombosis - Sensorized screening
system - Classification - Ultrasound

Introduction

The quick and accurate detection of deep venous thrombo-
sis (DVT) is of extreme importance during postsurgical care,
particularly after procedures such as hip and knee replace-
ments. This disease, where clots form in the lower limbs
and can obstruct blood flow, is a precursor to the potentially
deadly pulmonary embolism (PE). Approximately 80 % of
the emboli to the lungs arise from thrombi in the leg veins
[1], and estimates of deaths each year because of PE are
150,000-200,000 in the USA [2].

It has been suggested that by controlling and preventing
DVT, the prevention of PE can be achieved [3]. If DVT can
be detected in its early stages, for example, through the prac-
tice of screening patients postoperatively, the occurrences of
major PE can be reduced because of earlier diagnosis and
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treatment of DVT [4]. In this setting, a fast, simple and reli-
able test that could be carried out directly where the patients
are located would be extremely useful [5].

An ultrasound-based screening system for DVT that uses
contour detection and measurements from a sensorized probe
to determine vessel compressibility, and therefore the possi-
bility of DVT, has been previously presented [6]. Transverse
vessel contours are detected in B-mode ultrasound images
using a spatial Kalman filter with an ellipse model [7], and
vessel location is tracked in real time using sensor- and
image-based measurements. The system has undergone lab-
oratory and clinical evaluations [8] with encouraging results.
Sensitivity of up to 100 % for DVT detection using the vessel
compressibility measures has been reported for this system
in a previous clinical evaluation [14].

This paper builds on previous work toward the develop-
ment of an accurate and reliable DVT screening system,
using measures calculated from ultrasound data. A classi-
fication approach was used to evaluate the usefulness of a
series of DVT measures and also as the basis for calcu-
lating a single optimal measure by combining the various
criteria. Patient data, collected after Institutional Clini-
cal Ethics Board Review at the Orthopedics ward of the
University of British Columbia Hospital, were used to eval-
uate the new objective measures and the optimal feature
calculation.

Vessel assessment criteria

Determining vessel compressibility by observing the trans-
verse area of the veins using B-mode ultrasound when gentle
pressure is applied has long been recognized as the most
accurate and useful criterion for DVT diagnosis [9]. Loss of
compressibility of a thrombus filled vein under gentle probe
pressure, i.e., compression ultrasound (CUS) [10], accurately
indicates high probability of anechoic thrombosis. On the
contrary, if a vein does completely collapse, the possibility
of DVT in that section of the vein is very small. In addition
to vessel compressibility, determining whether blood flow
is unobstructed in a vessel can help confirm or rule out the
possibility of DVT.

Compressibility criteria

Two compressibility criteria based on CUS and aimed at
quantifying vessel stiffness and the probability of DVT
within the examined vessel were presented by Guerrero et
al. [6].

The first measure, the transverse area ratio (TAR), is
defined as the ratio of the minimum (A ;,) to the maximum
(Amax) transverse vessel areas for a specific segment, or
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Fig. 1 Typical data for a healthy, compressible vein

TAR = Amin/Amax (])

The TAR indicates how much the vessel area decreases under
compression, as a percentage of the original transverse ves-
sel area. A large TAR (~100 %) indicates an incompressible
vein segment and the possibility of DVT, while a small TAR
(~0%) indicates a normal compressible vein.

The second measure, called the slope measure, is a vessel
stiffness, which maps normalized transverse vessel area (A)
measurements to normalized applied force (F) measurements
obtained from the ultrasound probe during compression. The
vessel stiffness measure is the slope m of the fitted line

A=mF+b 2)

where the A-axis intercept b is not used. A slope value m ~ 0
indicates venous incompressibility and possible DVT, while
ahealthy vein would generate anm ~ —1. The normalization
of F and A is performed based on the maximum measurement
values at a given location. The slope measure is represented
by the line in Fig. 1, while the TAR would be the ratio of the
minimum to maximum of the data points.

In the DVT screening system, the vessels of interest are
imaged on a transverse plane and the user gently presses
down with the ultrasound probe and releases, cued by
the system. A sensorized ultrasound probe (see Fig. 3) is
used to measure the applied force while an examiner per-
forms a modified CUS examination. An electromagnetic
sensor provides the location information used to register the
data.

The transverse vessel areas are estimated using a contour
detection algorithm that uses a spatial Kalman filter and an
ellipse model [7]. This radial search algorithm detects the
vessel walls and generates an estimate of the ellipse para-
meters of the model using the framework of the extended
Kalman filter. In addition, the system constructs a 3D model
of the scanned vessel using the uncompressed vessel contours
(Fig. 2). The contour detection has an error of 1.06—1.70 pix-
els when segmenting patient images, and the area estimation
has a mean error of about 10 %. These errors are approxi-
mately equal to inter-observer variation obtained from expert
segmentation of the same images [7]; we therefore believe
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Fig. 2 A scanned vessel model (left), with results of a compression examination color-mapped to the surface to indicate vessel compressibility.

B-mode ultrasound with detected vessel contour (right)

that the accuracy of the detection algorithm does not signifi-
cantly affect the results.

Validation of compressibility criteria

The compressibility criteria have been validated in previous
studies, when using the DVT system to obtain data from a
total of 34 patients, 59 scanned vessels and 391 individual
compression assessments [14]. In all cases, the results of a
standard CUS examination were used as the gold standard,
where patients were classified as either positive or negative
for DVT. These results were compared to the data generated
by applying a threshold to the compressibility criteria, where
a threshold of 55 % was used for the TAR and —0.2 was used
for the slope [6].

In a first study, the sensitivity obtained with the TAR mea-
sure was 92 %, while a sensitivity of 100 % was obtained with
the slope measure. Specificity was in the range of 50—65 %.
In a second study, the sensitivity and specificity of the system
are 93 and 25 %, respectively, when using the average TAR
values for each vessel model. When using the slope measure,
a sensitivity of 100 % was obtained, and specificity was in
the range of 36-64 %.

Flow criteria

Ultrasound can also be used to determine whether there is
adequate blood flow within a vessel. In an augmentation
examination, the vessel of interest is viewed on the long axis
using color flow imaging, and the patient either flexes their
ankle or the examiner gently squeezes the patient’s calf. A
large increase in flow is observed for healthy vessels, while a
minimal or nonexistent flow increase points toward a vessel
with DVT. In this case, the thrombus does not have to be
directly imaged. However, because of low sensitivity, color
flow imaging cannot stand alone as a method for DVT detec-
tion [11].

A flow ratio calculation was introduced by Sasaki et al.
[12]. The peak flow signal at active maximum ankle flex-
ion and the peak flow signal at rest were measured for 11
patients (22 limbs) with continuous wave Doppler and used
to manually calculate flow ratios in the femoral veins, and
care was taken to view the vessels in a longitudinal plane,
with a 60° angle between the vessel and the CW Doppler
direction. Flow ratios for patients with non-occlusive DVT
were significantly lower than those without. Mean flow ratios
for patients positive for DVT were 1.18 (range 1.0-1.3),
while mean ratios for those negative for DVT were 3.31
(range 1.8-4.8).

An objective measure based on flow characterization was
included in our DVT screening system based on the con-
ventional flow augmentation examination. Continuous wave
Doppler was not used, but rather the color flow imaging
modality was used instead. These data were provided as a
separate image stream by the system (see “DVT screening
system” section). A significant number (~500) of flow data
points are acquired when the patient is at rest and a similar
number of data points are acquired while actions to augment
blood flow are performed. These data are acquired automati-
cally centered at the location of the detected vessels described
in “Compressibility criteria” section, or from user input. Peak
flow values from each of the two sets are used to calculate a
flow ratio as outlined by Sasaki et al.

Classification for DVT

Since a number of objective measures for detecting DVT
can be calculated, a classification approach [13] was used to
determine the usefulness of each and to calculate a single
optimal feature which combines several of these objective
measures into one, for a given dataset. This approach gen-
erates a combined feature based on the DVT measures that
maximizes the class separability for DVT detection, based on
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Fisher’s linear discriminant analysis. In this case, the class
separability criterion is J, as described below.

Patient data were collected and assigned to one of two
classes based on the presence or absence of DVT as deter-
mined by a gold standard test, denoted by X; and X»,
respectively. A value J, which is interpreted to indicate the
usefulness of a specific measure, is then calculated as [13]

_ Tr(Sm) )

Tr(Sw)
where Sy, is the mixture scatter matrix, and Sy is the within-
class scatter matrix. The mixture scatter matrix Sy, is defined
as the covariance of all the measurements X = [ X; X5 |7
with respect to the global mean, or

Sm = E{(X — o)X — 1to) "} )

given that 1, is the mean of X, and the within-class scatter
matrix Sy, is the weighted covariance

Sy=—81+-—5 (5)

where N, N, are the number of measurements for each class,
N = Ni + Nj is the total number of measurements, and S
and S are the covariances of X and X, respectively. Tr(Sy)
is a measure of the average variance of the features, across
all classes.

Avalue of / = 1indicates that the specific measure is only
as good as chance for differentiating between the two classes.
Higher values of J indicate an increasing ability to correctly
differentiate whether a measurement belongs to one class or
the other and arise when feature values are well clustered
around their mean within each class and when the clusters of
the different classes are well separated [13].

Our goal is to transform our m-dimensional feature vector,
containing samples for some or all of the measures indicated
in Table 1, into an /-dimensional vector (m < [) where our
class separability criterion J is optimized. An optimal mea-
sure [13] was then calculated using

y = (12 — unSy'X (©6)

where 1 and w, are the mean values of the measurements
in class 1 (positive for DVT) and class 2 (negative for DVT),
respectively, and X is a vector containing all the measure-
ments from both classes. This resulting linear classifier is
also known as Fisher’s linear discriminant.

We calculated the optimal features for all possible com-
binations of the described DVT measures and obtained the
corresponding J value for each. The resulting J values for
each of the optimal measures were compared to determine
whether the optimal, combined features provided additional
information.

Once an optimal feature is obtained for a given combina-
tion of measures, Sy, Sy and J are recomputed. In use, a
threshold would be established for y, and new samples for

Table 1 Individual measures

used for DVT classification Measure description Label ‘ ’ ‘

Compound TAR criteria TAR-1 1 Small Max.
Compound TAR criteria TAR-2 1 Small Mean
Compound slope criteria Slope-1 1 Small Max.
Compound slope criteria Slope-2 1 Small Mean
Compound TAR criteria TAR-3 Many Small Max.
Compound TAR criteria TAR-4 Many Small Mean
Compound slope criteria Slope-3 Many Small Max.
Compound slope criteria Slope-4 Many Small Mean
Compound modified slope criteria (not normalized) Slope-5 1 Small Max.
Compound modified slope criteria (not normalized) Slope-6 1 Small Mean
Compound modified slope criteria (not normalized) Slope-7 Many Small Max.
Compound modified slope criteria (not normalized) Slope-8 Many Small Mean
Compound TAR criteria TAR-5 1 Large Max.
Compound TAR criteria TAR-6 1 Large Mean
Compound slope criteria Slope-9 1 Large Max.
Compound slope criteria Slope-10 1 Large Mean
Compound flow ratio Flow-1 N/A N/A N/A

4 Number of points used in outlier removal
b Distance threshold used in outlier removal
¢ Maximum or mean value of criteria used per vessel model
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the compression and flow measures would be substituted in
place of X (i1, p2 and S, ! remain the same). The result of
Eq. (6) compared to the established threshold would deter-
mine whether DVT is present or not.

Experimental setup
DVT screening system

All data acquisition was performed using the DVT screening
system developed by Guerrero [14]. With the system, vessels
of interest are imaged as described in “Vessel Assessment
Criteria” section, and the transverse area of the scanned ves-
sels is estimated, and blood flow information is acquired. The
system processes the collected data on-the-fly and generates
compressibility and flow measures which in turn indicate the
possibility of DVT.

The DVT screening system is implemented on a Ultra-
sonix Sonix® PC-based ultrasound machine with the Ulterius
research package. It is a dual-core Intel Pentium 4 processor
PC, running at 3.00 GHz with 1.0 GB of RAM, on a Microsoft
Windows XP operating system. The research package allows
direct access to the ultrasound data at the original resolution,
which eliminates the need for video acquisition hardware and
greatly increases system speed. The system directly reads
other ultrasound parameter values such as gain, depth and
frequency throughout a scan. Contour detection and tracking
are performed at the native ultrasound frame rate (ranging
from about 10 to about 40 Hz), and up to three vessels can be
tracked and detected at once.

A sensorized handheld ultrasound probe consisting of a
pair of nested shells and force and location sensors, as shown
in Fig. 3, is used. Two aluminum shells surround a linear 9—
4 MHz ultrasound probe. The inner shell is fixed to the probe,
while the outer shell is connected to the inner shell through
the 6 degree-of-freedom (DOF) force/torque sensor (Nano25,
ATI Industrial Automation, Inc.) at the rear. The examiner
can grasp and manipulate the ultrasound probe in a normal

Fig. 3 Sensorized ultrasound probe used for data acquisition

manner, and all applied forces and torques are measured.
An electromagnetic sensor (PCIBird, Ascension Technology
Corp.) is rigidly attached to the rear of the outer shell through
a ~135 mm plexiglas rod, and therefore, the location of the
image plane (and extracted vessel contours) can be calculated
using a calibrated transformation.

The user interface, which has undergone a usability
evaluation with satisfactory results [14], includes a virtual
environment displayed at a fixed frame rate 20 Hz, the ultra-
sound image and control buttons. A touchscreen (Magic
Touch X-Model, Keytec, Inc.) was placed over the standard
Ultrasonix monitor and is used as the input device.

For each scanned vessel, a 3D model is constructed from
discrete slices. Compression data are acquired and assigned
to one of these discrete slices, using a distance threshold. Data
are normalized based on the maximum F and A values ateach
slice, allowing for variations in vessel size and required com-
pression force (e.g., for femoral vs. popliteal or calf veins).
The resulting TAR and slope values are calculated online for
each of the discrete locations of a compression examination.
In addition, the system saves the raw data (ultrasound image,
detected contour, force/torque and location measurements)
to generate the individual data points used to calculate the
compressibility measures. An additional set of measures was
calculated based on the slope criteria, using non-normalized
force values. The objective measure based on flow charac-
terization was implemented using color flow imaging. Flow
data were collected when the patients were at rest and while
actions to augment blood flow were performed, using the
location of the detected vessels or from user input. Peak flow
values from each of the two sets were used to calculate a flow
ratio as outlined in “Flow criteria” section.

Data acquisition

All data were collected at the University of British Columbia
Hospital. Patients who had undergone hip replacement
surgery or knee replacement surgery were invited to partici-
pate. Only those who could provide informed consent were
scanned. The DVT screening system was used to scan seg-
ments of the superficial femoral vein and assess them for
compression. Vessel bifurcations were not scanned. When
possible, more than one vessel segment per patient was
scanned. When possible, calf veins were scanned.

The examinations, approved by the University of British
Columbia Clinical Research Ethics Board, were carried out
by two nurse practitioners after undergoing training for using
the system. Compression data were gathered in compression-
release cycles after having generated a 3D vessel model. A
flow assessment was performed by measuring mean venous
flow values, determined by color ultrasound, during rest and
when the patient flexed their ankle.
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All patients underwent an independent CUS examination
in the Radiology Department to determine whether DVT was
present, and this was used as the gold standard.

Classification

Multiple compound measures for DVT based on the TAR,
slope and flow criteria were calculated and used in the clas-
sification and calculation of an optimal feature approach as
described in “Classification for DVT” section. Using mean
and maximum values per model for each scanned vessel
segment, “global” DVT measures were generated for each
segment.

An outlier removal approach was used to refine the data.
Using the slope criteria, it was determined whether any data
point is farther than a given threshold from the line fit to
the data. If so, that point is marked “invalid” and the slope is
recalculated. The TAR is calculated using only the remaining
“valid” points.

The number of outlier points removed is used as a parame-
ter (1, many), where the slope criteria is recalculated until all
points are within the given threshold if many points are to be
removed, or alternately only one point is removed, that with
the largest error. In addition, two distance thresholds (small
and large) were used.

An additional set of measures was calculated based on
the slope criteria, except that the force values used in the
calculation were not normalized. Otherwise, this criteria
was calculated in the same manner as the slope described
in “Compressibility criteria” section. The outlier removal
approach was also applied to the data obtained using these
measures.

In total, 17 measures were calculated and used for clas-
sification of the patient data. These are presented in Table
1, with the parameters used for their calculation indicated
therein. Only vessel scans that had compressibility data
(TAR and slope) and flow data (flow ratio) were considered
for the compound measures to determine DVT; otherwise,
they were not included in this analysis. In some cases,
we were unable to acquire flow data because of a lack of
flow data from the ultrasound machine, which is a common
and known complication when imaging with color Doppler
ultrasound.

Optimal features were calculated for all combinations of
the different measures, using combinations of two, three
and so forth up to 17 compound measures. The sensitivity
and specificity of each of the optimal features were deter-
mined using a leave-one-out validation approach. Leave-
one-out cross-validation is a valid statistical method where
almost all data are used for training, and one final data
point is used for evaluation. This procedure is repeated
until all points are used for validation. In this manner,
any optimal feature obtained from the combined measures
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that provided 100 % sensitivity and specificity was noted.
The J value for each of these noted combinations was
calculated.

Results

A total of 19 patients were scanned, aged 47-78 (mean 66.7),
for a total of 26 limbs. Of these, four patients were positive
for DVT, corresponding to seven vessels positive for DVT
that were scanned using our system.

The compressibility measures for DVT that have been
described were calculated online by the DVT screening sys-
tem, as was the flow ratio criteria. The compound measures
described in “Data acquisition” section were calculated off-
line, either from the online compressibility results or by
recalculating the criteria using the stored data.

The J values for the individual DVT measures are pre-
sented in Table 2, as well as the sensitivity and specificity of
each. These results are used as a reference to which the opti-
mal features could be later compared. The highest J value
corresponds to the flow ratio criteria. However, the J value
is still very close to one, indicating that this measure may not
be very good at classifying patients with DVT, and although
sensitivity is 100 %, the specificity of 70 % is still low.

The combinations of individual measures that generated
an optimal feature with maximum sensitivity and specificity
were then identified. An exhaustive search was carried out

Table 2 DVT detection of individual measures

Measure label J value Sensitivity (%) Specificity (%)
TAR-1 0.9232 66.7 66.7
TAR-2 0.9372 50.0 57.1
Slope-1 0.9709 50.0 66.7
Slope-2 1.0324 66.7 76.2
TAR-3 0.9556 60.0 64.0
TAR-4 0.9560 60.0 64.0
Slope-3 1.0083 60.0 64.0
Slope-4 1.0027 60.0 76.2
Slope-5 0.9773 40.0 66.7
Slope-6 1.0640 60.0 76.2
Slope-7 0.9915 60.0 69.6
Slope-8 1.0228 40.0 76.2
TAR-5 0.9623 66.7 67.9
TAR-6 0.9592 50.0 65.5
Slope-9 1.0209 50.0 70.4
Slope-10 1.0612 50.0 67.9
Flow-1 1.0973 100.0 70.0

Performance of the individual measures for DVT detection in terms of
sensitivity and specificity, for the data set. Also shown is the J value,
indicating how much better than chance (> 1) the given criteria is
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Table 3 Optimal features for DVT detection

d 7 e f

OF-1 9.2541 TAR-2, Slope-1, Slope-2, Slope-4, 10
Slope-8, TAR-5, TAR-6, Slope-9,

Slope-10, Flow-1

TAR-2, Slope-2, Slope-3, Slope-4, 10
Slope-8, TAR-5, TAR-6, Slope-9,
Slope-10, Flow-1

TAR-2, Slope-1, Slope-2, Slope-3, 11
Slope-4, Slope-8, TAR-5, TAR-6,
Slope-9, Slope-10, Flow-1

TAR-1, TAR-2, Slope-1, Slope-2, 13
TAR-4, Slope-3, Slope-4, Slope-6,
Slope-8, TAR-6, Slope-9, Slope-10,

Flow-1

TAR-1, TAR-4, Slope-3, Slope-4, 13
Slope-5, Slope-6, Slope-7, Slope-8,

TAR-5, TAR-6, Slope-9, Slope-10,

Flow-1

TAR-1, Slope-1, Slope-2, TAR-3, 14
TAR-4, Slope-3, Slope-4, Slope-5,
Slope-8, TAR-5, TAR-6, Slope-9,
Slope-10, Flow-1

TAR-1, Slope-1, Slope-2, TAR-3, 15
TAR-4, Slope-3, Slope-4, Slope-5,
Slope-6, Slope-7, TAR-5, TAR-6,
Slope-9, Slope-10, Flow-1

OF-2 6.4280

OF-3 9.3620

OF-4 44.2120

OF-5

239.3107

OF-6

11.6423

OF-7 9.5800

4 Optimal feature label

¢ Compound measures used for optimal feature

f Number of compound measures used for optimal feature calculation.
J values >>1 indicate that the optimal features calculated from the com-
pound DVT measures are useful for detecting DVT. All optimal features
in this table had 100 % sensitivity and 100 % specificity for DVT

for combinations of all 17 features indicated in Table 2. Only
those combinations that yielded 100 % sensitivity and 100 %
specificity were selected for further analysis. Seven such
cases were found, and these are presented in Table 3. The
individual DVT features found for each of the combinations
are clearly indicated in the third column. The resulting J
values for the optimal features were calculated using Eqgs.
(3)—(5), but the values for X and X, are calculated using the
samples from the specific compound measures indicated in
the table, for each of the optimal features.

Figure 4 compares the single measure with highest J value
and sensitivity, Flow-1, with the optimal feature with the
highest J value, OF-5.

Discussion

A new approach has been presented for detecting DVT using
an optimal feature calculated from simple, ultrasound-based
DVT criteria. This approach results in a drastic increase in the
measure of usefulness used to evaluate the measures, and per-
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Fig. 4 Comparison of the a flow ratio criteria (Flow-1) and b one of the
optimal features (OF-5) for detecting DVT. It is clear from a that flow
ratio values (x-axis) for healthy and diseased individuals overlap, from
which either false positives or negatives can arise. However, the optimal
feature values (x-axis) for healthy and diseased cases are noticeably
different. The y-axis in both cases denotes scan counts

fect DVT detection was obtained for the test set of clinically
relevant data. In addition, this new detection procedure can
be immediately implemented since it is based on an existing
system.

The system presented here is novel in at least two ways:
(1) In addition to acquiring data used to calculate the com-
pressibility measures, Doppler flow data are acquired at the
same, centered on the vessel that is detected automatically,
and (2) we propose a compound measure that combines com-
pression and flow measurements to generate a single DVT
criteria.

The current approach to screening for DVT relies on a
single compound measure, such as the mean or maximum
value of TAR or slope values of a scanned vessel or the flow
ratio, in order to determine whether DVT is present. While
satisfactory results in terms of detection (sensitivity) can be
obtained from a single measure, the proper exclusion of neg-
atives has remained difficult. This is illustrated by the results
from the flow ratio (Flow-1) in Table 2. In a clinical setting,
correctly identifying these negatives is important, in order
to avoid unnecessary or over-treatment of DVT, which can
in turn have serious consequences such as hemorrhaging. In
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addition, while some of the individual measures in Table 2
have varying values of sensitivity and specificity, the useful-
ness of these measures as indicated by the J value is very
similar, and at times no better than chance (measure is ~1).

By combining the multiple measures using a classifica-
tion framework, we were not only able to obtain sensitivity
and specificity of 100 %, but we were able to increase the J
value up to over two orders of magnitude. This indicates that
by representing the same data, that is, the raw data used to
calculate the TAR and Slope values, and by recombining it
using the classification scheme, more and better information
has been obtained.

It is interesting to note that all the optimal features with
100 % sensitivity and specificity were obtained by including
the Flow-1 measure. This indicates that the flow ratio pro-
vides a great deal of information on the possibility of DVT.

In addition, we believe that it is significant that the TAR-
6 measure—one of the measures where the outlier removal
approach has the least effect, since only one point is marked
invalid and a large distance threshold is used—is also present
in all optimal features. Similarly, the other measures where a
large distance threshold is used for outlier removal (TAR-5,
Slope-9, Slope-10) are present in all but one optimal feature.
This may indicate that the use of a linear approximation for
the compression profile of applied force vs. transverse area
may not be adequate. All optimal features also include at least
one modified slope measure, indicating that the applied force
and its range may be important for identifying DVT, and the
normalization of the force data for the slope calculation may
be masking useful information.

We consider that the results of this novel combination of
previously published measures help us understand what kind
of measures and imaging are needed in order to identify DVT
with high accuracy. Furthermore, the evaluation has been
performed on clinical data in a clinical setting, lending further
weight to the results. The combination of these measures
leads to a new imaging modality in which a vessel model,
tagged with a combined measure, can be displayed to the
user as an accurate and objective measure of DVT.

Conclusions

A novel approach for detecting DVT using an optimal mea-
sure calculated from ultrasound data has been presented.
Using multiple compressibility and flow measures calculated
from ultrasound and sensor data, a single optimal feature was
calculated. This optimal feature was shown to have 100 %
sensitivity and specificity when tested on patient data from
the Orthopaedics ward at the University of British Columbia
Hospital. In addition, there was an increase in the measure of
usefulness used to evaluate the measures of more than two
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orders of magnitude when comparing the optimal feature to
the best single feature.

To our knowledge, there is currently no clinical measure
that provides 100 % sensitivity and 100 % specificity for DVT
detection. It is true that the measures used as data sources
(compressibility and flow) have been well studied, but indi-
vidually the results obtained were not better than existing
clinical practices (e.g., compression ultrasound). In addition,
the previously studied measures have been examined individ-
ually, and not as a single compound measure. We believe that
demonstrating an objective measure with 100 % sensitivity
and 100 % specificity is highly significant, and more so con-
sidering that the system does not require training.

The power of our results is not yet sufficient to be conclu-
sive, and evaluation on larger datasets would be appropriate,
but this is a new measure that is very promising, and has
been evaluated in 19 patients with a complex system ready
for clinical use.
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