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Abstract—A method for vessel segmentation and tracking in
ultrasound images using Kalman filters is presented. A modified
Star–Kalman algorithm is used to determine vessel contours
and ellipse parameters using an extended Kalman filter with an
elliptical model. The parameters can be used to easily calculate
the transverse vessel area which is of clinical use. A temporal
Kalman filter is used for tracking the vessel center over several
frames, using location measurements from a handheld sensorized
ultrasound probe. The segmentation and tracking have been
implemented in real-time and validated using simulated ultra-
sound data with known features and real data, for which expert
segmentation was performed. Results indicate that mean errors
between segmented contours and expert tracings are on the order
of 1%–2% of the maximum feature dimension, and that the
transverse cross-sectional vessel area as computed from estimated
ellipse parameters , as determined by our algorithm is within
10% of that determined by experts. The location of the vessel
center was tracked accurately for a range of speeds from 1.4 to
11.2 mm/s.

Index Terms—Deep venous thrombosis, image segmentation,
Kalman filtering, ultrasound, vessel tracking.

I. INTRODUCTION

ULTRASOUND is a widely used medical imaging
modality. It is inexpensive, widely accessible, fast,

and safe. Ultrasound image segmentation is required in a
number of medical examinations. For example, in obstetrics,
dimensions of various anatomical features of the fetus must be
measured; in oncology, the prostate must be outlined for radi-
ation treatment planning; in cardiovascular applications, deep
venous thrombosis (DVT) and atherosclerosis are diagnosed
using segmented features in ultrasound images. However,
image segmentation is made difficult by shadowing and speckle
typical of ultrasound images [1].

In DVT, blood clots or thrombi are formed within the deep
veins. These thrombi may occlude venous flow, or break off
from the vessel wall and cause a possibly fatal pulmonary em-
bolism. It has been reported that there are from 170 000 to as
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many as 260 000 patients diagnosed and treated each year in the
United States [2], and the annual incidence of a first episode
of clinically suspected venous thrombosis has been estimated at
2%–4% in the general population [3].

The diagnosis of DVT is primarily done through compres-
sion ultrasound (CUS) examinations [4]. The examiner applies
gentle ultrasound transducer pressure while imaging a region
of interest, and the imaged vein collapses unless there is a
thrombus inside [5], [6]. Since younger thrombi and blood
have similar echogenicity it may not be possible to identify a
thrombus from a single image, and it is necessary for the exam-
iner to press down and observe the sequence of -mode images
to determine the presence or absence of thrombi. Chronic
thrombi may be more echogenic, but for DVT treatment it
is important that a decision be made early during thrombus
formation.

A high operator dependence has been reported for CUS ex-
aminations [7], [8]. Single limb screenings may take in excess of
40 minutes and repeat scans have been reported in up to 76% of
cases [9]. A “single ultrasound” examination strategy for DVT
detection has been suggested [10]–[12] addressing these con-
cerns. Schellong et al. [11] present a methodology that includes
the strict standardization of the ultrasound examination protocol
and a sound training of the sonographer. The authors argue that
by making the examination more objective (standardization of
the examination) and by reducing user variability (sound ultra-
sonographer training), the diagnostic workup of patients can be
reduced to a single examination. Image segmentation may be a
means for achieving a standardization of the examination.

Segmentation methods that incorporate knowledge about the
shape or geometry of the desired feature may improve detection.
A broad review of ultrasound segmentation methods has been
presented in [1], which focuses on -mode imaging and spe-
cific clinical application areas [echocardiography, breast ultra-
sound, transrectal ultrasound (TRUS), and intravascular ultra-
sound (IVUS)], and where multiple methods that use assumed
feature geometry are presented.

In [1], segmentation methods were classified based on
whether the output was a detected contour or curve, or a
grouping of pixels into regions, among other criteria such as
dimensionality of the data. In the 2-D domain, multiple contour
finding approaches are based on the active contours concept,
where the contour location is determined by balancing “forces”
obtained from processed image data and counteracting local
constraints determined by the active contour model. Models
based on active contours or snakes [13], [14] are among the
most prominent methods in the field for image segmentation.
However, these methods have the drawback that they require
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careful initialization, are difficult to implement in real-time,
and often require careful tuning of parameters for convergence.

Many authors have attempted to determine contours from
various types of vessels in ultrasound images, some of which
were reviewed in [1]. While IVUS depicts vessels, several key
differences exist between IVUS images and the deep vein im-
ages obtained during a compression examination. The geom-
etry of IVUS images is described in polar coordinates, while
linear arrays are typically used for CUS exams. Also, the range
of isonation frequencies for IVUS is 30–40 MHz, while CUS
exams use arrays at 4–10 MHz, resulting in clear differences
in image scale, resolution, and depth. Methods used for seg-
menting vessels in IVUS cannot, therefore, be directly applied
to segmentation of the deep vessels of the lower limb.

Segmenting vessels, namely the carotid artery, in images from
linear arrays has been addressed by [15]–[18], among others.
In [15] and [16] a model-based ultrasound segmentation algo-
rithm is presented. A Star–Kalman algorithm uses a circular
vessel model to detect vessel boundaries in ultrasound images
of the carotid artery, as explained in more detail in Section III.
In [17], a discrete dynamic contour model is used to determine
the lumen contour of the carotid artery by internal forces cal-
culated from geometrical properties of the contour, and by ex-
ternal forces obtained from the image gray level features. The
algorithm is initialized by a single seed point, and the image gra-
dient and the local gray level ratio between the inside and out-
side of the contour are combined to calculate the external forces.
Good results are reported, but algorithm robustness depends on
the quality of training images used to obtain algorithm param-
eters. Another deformable model based method uses a modi-
fied balloon model [18]. In this case, a combination of the gra-
dient and the second order derivative of the image is used as the
external force, while an internal “pressure” is used to push the
boundary outward. A 3-D arterial model was constructed using
the extracted contours. Good results are also reported for carotid
artery images.

Also addressed in [1] is the use of filters in order to improve
segmentation. Other examples include filtering of ultrasound
images by low pass filters [19] and median filters [20].

When tracking features in ultrasound images over several
frames, template matching is a common procedure; the feature
to be detected is described by a mask and a correlation proce-
dure is performed to determine its location. The work of [21]
presents a comparison of different correlation methods to track
speckle motion using sum of absolute differences (SAD), nor-
malized and nonnormalized correlation, resulting in similar per-
formance characteristics. The work of [22] also used SAD to
track ultrasound speckle patterns to determine blood flow ve-
locity and angle in carotid arteries, and state that “SAD methods
proved to be the most efficient measure with virtually identical
performance to other explored methods.” Drawbacks to these
types of methods include high processing requirements.

Others [15] have used Kalman filters for tracking a seed point
in real-time ultrasound images. The movement of the seed point
through space is described by a dynamic model and measure-
ments are used to estimate the position of the point.

This paper presents the image segmentation and tracking de-
veloped for a new CUS approach to the detection of DVT. The

overall approach has been presented in [23], with the goal of
making the CUS examination less operator dependent and faster
in two ways: by obtaining objective measures of venous com-
pressibility and by recording 3-D venous compressibility maps
automatically. The work of [23] only summarizes the vein seg-
mentation approach from ultrasound images, which is the basis
for obtaining the examination objective measures. The segmen-
tation approach is described here, where the model description
is provided in sufficient detail for implementation and compar-
ison to other methods, and the segmentation is characterized by
using synthesized images and patient images. In addition, this
paper describes the temporal Kalman filter used to track the fea-
ture location over successive image frames.

The paper is organized as follows. Section II presents an
overview of previous work on a CUS screening system and
the instrumentation of the ultrasound transducer as presented
in [23]. Section III presents in detail the approach taken for
vessel segmentation, while Section IV presents the vessel
tracking. Section V presents the validation protocol, while
Section VI presents experimental results. A discussion follows
in Section VII, with the conclusion in Section VIII.

II. DVT SCREENING WITH COMPRESSION MEASURES

The work of [23] presents a DVT screening system, including
the development and validation of objective measures for CUS,
the development of the sensing system, and the construction and
graphical rendering of the vein models built from segmented
vessels. In that approach, the transverse vessel area is approxi-
mated and used in conjunction with measurements of the force
applied by the ultrasound transducer and transducer location to
calculate vessel compressibility measures. Veins are segmented
in cross-sectional ultrasound images in real-time, with frame-
rates of 10–16 Hz and better, and the feature location is tracked
over successive image frames using a temporal Kalman filter
and location measurements from an electromagnetic position
sensor attached to the ultrasound transducer.

The system instrumentation for the DVT screening system
is described in detail in [23], and is only summarized here
for completeness. The system consists of 1) a PC-based ul-
trasound machine (RP 500, Ultrasonix Medical Corporation,
Richmond, BC, Canada), 2) a sensorized handheld transducer
that includes 6 degree-of-freedom (6DOF) localization using a
magnetic sensor (PCIBird, Ascension Technology Corporation,
Burlington, VT) and a 6DOF force/torque sensor (Nano25,
ATI Industrial Automation, Inc., Apex, NC) that monitors the
forces applied to tissue, and 3) a user interface that connects
the segmented vessel contours into single tubular structures
and renders them to the user, color-coded with a measure-
ment-based vein compressibility measure. Image acquisition
is performed using the libraries provided by Ultrasonix. These
allow direct access to memory and image data at the native
ultrasound frame rate, and no additional video acquisition
hardware is necessary.

To measure transducer forces, two rigid shells were con-
structed to surround the linear 9–4 MHz ultrasound probe.
The inner shell is fixed to the probe, while the outer shell is
connected to the inner shell through the force/torque sensor at
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Fig. 1. Sensorized ultrasound probe used in the DVT screening system shown,
where the outer shell surrounds the ultrasound probe and inner shell. Inner and
outer shells are connected at the rear by a force/torque sensor, and a location
sensor is mounted on a Plexiglas rod.

the rear, as shown in Fig. 1. The examiner can then grasp and
manipulate the ultrasound probe in a regular manner, and all ap-
plied forces and torques are acquired. The location of the probe
is obtained by rigidly attaching the electromagnetic sensor to
the rear of the outer shell by a 130-mm-long Plexiglas rod. The
locations of the image plane and extracted 2-D contours with
respect to a common 3-D reference frame are calculated using
a calibrated homogeneous transformation and the location
measurements. Many authors have reported successfully using
electromagnetic sensors in this manner [24] and reported errors
for these types of systems have been low (close to or less than
1% of the dimension of interest) [25], and are considered small
enough not to interfere with the present application.

The DVT screening system requires a vessel segmentation
method that can detect vessel contours and provide an esti-
mate of the transverse vessel area from ultrasound images in
real-time. In [23], the contour detection algorithm presented in
Section III is used. Estimated ellipse parameters and the final
search area from one image are used to initialize the contour
detection in the following image frame. In addition, the vessel
is tracked from frame to frame, as described in Section IV.

The estimates of the transverse vessel area are used to calcu-
late two vessel compressibility measures to determine the pos-
sibility of DVT within the examined vessel. The first DVT like-
lihood measure is called the transverse area ratio (TAR), which
is the ratio of minimum to maximum transverse vessel area of
a vessel segment, obtained as an examiner presses down and
then retracts the ultrasound probe. A healthy vessel is expected
to compress completely, generating a TAR close to 0%, while
it is expected that a diseased vessel will not ( ).
The second measure is the slope of the line fit to the normalized
calculated transverse areas as a function of the normalized ap-
plied force for a vessel segment. The slope corresponding to a
healthy vein would have a value close to , while the presence
of a thrombus would be indicated by a value close to 0.

A 3-D model is constructed using the estimated vessel con-
tours, and the vessel compressibility measures are mapped to the
vessel model surface as a color map and displayed to the user.

III. VESSEL SEGMENTATION

A real-time method for identifying the carotid artery contour
in cross-sectional ultrasound images was presented in [15] and

Fig. 2. Ellipse model for transverse vessel area. A vessel contour in an ultra-
sound image can be approximated by using an elliptical model with parame-
ters a, b, and �. Each contour point can be described in polar coordinates by
r = f(a; b; �; � ).

[16]. Using a Star algorithm [19] and a Kalman filter, the al-
gorithm assumes that the underlying vessel contour is a circle.
Starting with a seed point inside the carotid artery, intensity data
is detected along radii distributed uniformly in a star shape. The
most probable location of the vessel lumen is detected based on
a probabilistic edge detection function. The distance from the
seed point to the detected vessel lumen is treated as the measure-
ment in a spatial Kalman filter having the radius as a function
of radius angle as a state. No parameters need to be identified in
this algorithm, as the Kalman filter dynamics simply state that
the radius is a constant as a function of radius angle. This algo-
rithm has been shown to perform well in detecting features even
with echo drop-outs and shadowing artifacts.

Although the above circular model is adequate for arteries,
in the case of a vein under compression the assumption that the
vessel contour is a circle does not always hold. We propose an
elliptical model to describe the contour of the vein and approx-
imate the vessel area in a cross-sectional ultrasound image. In
polar coordinates from the center of the ellipse, the ellipse ra-
dius is given as a function of the radius angle by

(1)

where the parameters , , and are the angle and the length
of the semi-major axis, and the length of the semi–minor axis,
respectively, as shown in Fig. 2.

An uncompressed vein is described by an ellipse with eccen-
tricity which resembles a circle, while a
heavily compressed vein can be described using an ellipse with
an eccentricity value . In order to follow the approach
from [15] and [16], knowledge of the ellipse parameters are re-
quired to formulate spatial Kalman filter dynamics describing
the ellipse radius length as a function of the radius angle. Alter-
natively, the ellipse parameters can be included in an extended
Kalman filter and are estimated from measurement data. This is
the approach taken by the authors.

The use of an ellipse is a convenient way in which to model
the global information of the vessel contour, including varying
aspect ratios and orientations. It was selected because it is a
smooth curve described by few parameters, and provides a quick
way to compute the approximate enclosed area. In many cases,
compressed veins will be accurately approximated by ellipse,
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while in others this approximation will have significant errors.
However, the use as an ellipse as the global model is not crucial
for the contour detection algorithm to provide small approxi-
mation errors, because the ellipse model is used primarily to
provide the a good search bracket for the edge detection algo-
rithm, and not to parameterize the edge.

The segmentation is achieved by acquiring an ultrasound
image of a vein seen on the transverse plane, and a seed point

is selected, as described in Section IV, inside the con-
tour of the desired vessel. angularly equispaced radii are then
projected from the seed point to a maximum search distance

, which must be larger than the feature to be detected.
is calculated from the assumed maximum vessel size and

the known image scaling factors. Alternately, the vessel size in
pixels can be used. In our studies, vessel size was found to be
approximately 10 mm [23] and image scaling factors for our
DVT screening system range from 0.069 to 0.2 mm/pix. An
extended Kalman filter then generates estimates of the edge
location , and the ellipse parameters , , .

The nonlinear system describing the ellipse radius in terms of
the ellipse parameters from (1) can be written as

(2)

where

(3)

the state is , to is a radius angle
index, , and and are assumed to be sequences
of white, zero-mean, Gaussian process and measurement noise,
respectively, with constant covariances and , respectively.
The output is the radius length from the seed point to the
vessel boundary at angle and a function of the parameters

, and .
The framework of nonlinear state estimation using extended

Kalman filters [26] is used to find the state estimate using
the model defined by (2). The estimate of the state is
obtained from

(4)

where is the Kalman gain, and . The
Kalman gain for this system is obtained from

(5)

where is the state prediction covariance obtained from

(6)

is the measurement prediction covariance obtained from

(7)

and is defined as the Jacobian of , or

(8)

which is at the core of the extended Kalman filtering procedure,
and effectively linearizes the system [26]. The state covariance
is updated using

(9)

Finally, the estimated edge is generated by evaluating
.

A 1-D edge detector provides the measurement residual
from (4), which is obtained by processing the

brightness values along the radius emanating at angle .
number of candidate points are selected based on the re-

sults of an edge detection function, and a probability distribution
function describing the actual location of the edge is constructed
from these points for each radius, using (7)–(9) from [15].

The modified Star–Kalman algorithm generates a sequence
of state estimates of size each time the vein contour is tra-
versed, where takes values from 0 to radians. The vein
edge locations are described by the estimated . The estimation
procedure is performed by consecutively traversing the contour
several times, typically three. The original seed point is used
throughout, and a new seed point is not calculated until the next
image is processed. The state is only initialized at ,
and data obtained from going around the contour once is used
in consecutive traversals.

An ellipse centered at is reconstructed using (1), with
the estimated ellipse parameters , , in
place of , , and . If the vein contour is approximated well by
the ellipse, the approximate value of the transverse vessel area
can be obtained from .

The extracted contour and the reconstructed ellipse are
compared to each other, at additional computational expense,
to insure smoothness for the contour . The root mean squared
(rms) radial distance between boundaries [27] is used as
an error measure, and is computed by measuring the distance
between the estimated points and the corresponding points
on the generated ellipse. A data fit is deemed invalid if this
error is larger than

(10)

This threshold was determined experimentally in [20], where it
was first noted that decreased as the search area de-
creased, as long as the feature was completely contained within
the search area. This scaling is necessary because of the changes
in the estimated ellipse parameters and contour points due to
initial conditions, and allows a global threshold to be deter-
mined for varying search distances. Through additional exper-
imentation it was found that results improved when using a
threshold proportional to . Larger threshold values allow
better contour detection for less elliptically shaped features, but
may also increase the mean error in the segmented contour. If a
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data fit has been deemed invalid, is decreased by 5%–7%
of the initial value of and the contour detection is repeated.
If reaches a predetermined lower bound (10%–13% of ini-
tial ), contour detection has failed.

Additional processing in this stage includes the implementa-
tion of a median filter applied along each of the search radii in
the modified Star–Kalman algorithm. This filter improves con-
tour detection at a small computational cost when compared to
comparable filters [20].

IV. VESSEL TRACKING

The initial seed point within the vein employed in
the spatial Kalman filter described above is entered manually
by the operator by using a mouse or the ultrasound machine
pointing device. Without updating the seed point, the vessel mo-
tion with respect to the ultrasound transducer causes the spatial
Kalman filter to not converge and the vessel center is lost.

A seed tracking method was developed to accommodate
feature motion, following the approach presented in [16]. The
vein seed point is estimated through successive image
frames by a temporal Kalman filter (it is assumed , as
described below). For the Kalman filter dynamics, it is assumed
that the vein center moves with constant velocity from frame
to frame. If the current seed location is , the
seed location in the next frame is described by and the
previous seed location using

(11)

with the seed velocity described by ,
and is the discretization step. Typically, Kalman filters use
measurements of the state at the current iteration to update the
estimate, in this case the seed location. Unfortunately, a reliable
measurement of the seed location at the current frame is not
available. However, we do have the seed location at the previous
frame, or a delayed measurement.

The state space description of this system with delayed mea-
surements is written as

(12)

where

(13)

is the identity matrix, while is an by zero ma-
trix. The state is defined by

(14)

is the measurement of the seed point locations, and and
are assumed to be sequences of white, zero-mean, Gaussian

process and measurement noise with known covariances, re-
spectively. Note that the resulting dynamic system (12) is in-
dependent of the discretization step .

Fig. 3. Examples of contour and parameter estimation. Simulated data used to
test contour detection, with (a) expert tracing and (b) detected contour with de-
tected contours (white circles). The estimated semi-major axis a and semi-minor
axis b are presented as a solid and dashed line, respectively, oriented according
to the estimated �.

Fig. 4. Patient data (images cropped to 200� 200 pixels) with examples of
detected contours (white circles) and estimated ellipses. The estimated semi-
major axis a and semi-minor axis b are presented as a solid and dashed line,
respectively, oriented according to the estimated �. Expert tracings presented in
grey.

The temporal Kalman filter trajectory describes the predicted
spatial motion of the vein center from frame to frame, as shown
in Fig. 5, and the estimated seed point can be computed as
described in [28]. The estimated point is calculated in the cur-
rent image frame , and then projected onto the plane of the
ultrasound image, using only the and components (i.e.,
setting ). The 4 1 measurement vector is composed
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Fig. 5. Tracking the seed point. An estimate x̂ of the vessel center (x ; y )
along trajectory t is calculated for each image plane� using a constant velocity
model. The previously obtained vessel center c is used as measurement.

Fig. 6. The location with minimum brightness in an image region is found
using the SAD and (a) all, (b) half, or (c) one-fifth of the pixels in the region.

of the centroid of the contour detected at time as the
measurement of , while the measurement of is set to zero
since should lie on . The location sensor measurements are
used to compute the required coordinate systems transforma-
tions so that all coordinates are described in the current image
frame .

The estimated seed location from the Kalman filter is ade-
quate for most cases, with two notable exceptions. Since we
assume the seed moves with constant velocity, the seed loca-
tion may drift when imaging at one location (no movement)
and cause the seed location to be lost. Also, large errors may
occur when tracking the seed at one location (no movement)
and suddenly moving, or when moving the probe and suddenly
stopping. To address these issues, a subsampled SAD correla-
tion is performed in the area surrounding the seed point
estimated by the temporal Kalman filter described above. By
using a mask of size with constant and equal pixel
values, the location with minimum brightness (minimum SAD)
is found, corresponding to the center of the vessel, and used as

. The subsampling consists of using a fraction of all
pixels, such as 1/2 or 1/5 of all pixels within the mask, as il-
lustrated in Fig. 6, which reduces the correlation processing re-
quirements without a noticeable decrease in accuracy. Results
are presented in Section VI.

V. VALIDATION PROTOCOL

1) Contour Detection: The contour detection algorithm was
evaluated in two steps. The first was to determine the accu-
racy of the algorithm for detecting ellipse parameters and con-
tours from elliptical features with known characteristics, and the
second step was to determine the accuracy with which the algo-
rithm detected the actual feature contour determined by an ex-
pert tracing.

For the first step, ultrasound images were simulated using
Field II [29], with elliptical features with known parameters,

examples of which are shown in Fig. 3(a) and (b). The Field II
package provides an excellent framework for simulating ultra-
sound images using linear acoustics [1], and has been used for
various applications [30]–[32]. Nine different sets of ellipse pa-
rameters (eccentricity

and for all cases) were generated using 3.5 MHz as
center frequency, 100 MHz sampling frequency, 192 elements
(64 active elements) and 50 lines per image. The speed of sound
was set to 1540 m/s, and data was compressed to show 60 dB
of dynamic range. 80 000 scatterers were randomly generated
for tissue, and their amplitudes were randomly set with normal
distribution and maximum amplitude 1 as per typical Field II
simulations. Amplitude was set to 0 inside the defined ellipses.
In total, 18 simulated images were used (320 440 pixels,
0.091 mm/pix). Nine images as described above, and an addi-
tional 9 images with a 2 mm border, where the amplitude of the
scatterers had a normal distribution and maximum amplitude 3.

The effect of noise on the accuracy of the algorithm was also
explored by adding electrical noise (white, zero mean) to the
simulated radio-frequency (RF) signals from which the simu-
lated images were obtained. The resulting signal-to-noise ratios
(SNR) for tissue regions in the -mode images were approx-
imately 40, 30, 20, 12, 5, and , with lower SNR for the
vessel regions. In addition, the effect of 2 dB/cm attenuation due
to image depth was examined, by comparing results from im-
ages with and without attenuation. Images were simulated with
different settings (7.0 MHz as center frequency, 40 MHz sam-
pling frequency, 192 elements, 64 active elements, and 64 lines
per image, other settings as above), with ellipses using the same
eccentricity values as above and , for a
total of 25 images with and 25 without attenuation.

For the second step, six different vessels were segmented in
three different ultrasound images: one image with the jugular
vein and the common carotid artery (560 472 pixels), and two
images each with one saphenous vein and arteries (720 480
pixels).

Three experts [one radiologist (Savvas Nicolaou) and two
sonographers (Vicki Lessoway and Maureen Kennedy)] seg-
mented all images by tracing the contour using an image editing
application. Two of the experts (VL and MK) segmented all im-
ages twice, resulting in five expert tracings per image.

The algorithm was initialized in all cases with
radii, , , , and

. Values of ranged from
60–80 pixels for simulated images and 70 to 85 pixels for
patient images, depending on vessel size.

Seed points for each image were determined from the expert
tracings, from which a central point was calculated as the mean
of 50 evenly sampled points. The expert tracings were then de-
fined in polar coordinates originating at this central point. A new
contour was defined by dividing the radial component of each
polar coordinate by 4. Pixels that were contained within this new
contour were sampled by a factor of 4 and the resulting coordi-
nates, all of which are unique and located roughly at the center
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Fig. 7. Location of seed points. Example of seed points (.) generated for a sim-
ulated image. Expert tracing shown in gray.

of the vessel, were used as the seed points. Fig. 7 shows an ex-
ample of seed points generated for a simulated image.

For simulated images, the estimated ellipse parameters were
compared to the known parameters and errors were determined
as a percentage of the known parameter. The area obtained from
the estimated ellipse parameters using was compared to the
“true” area, calculated from the known parameters using .

The area from estimated ellipse parameters was also com-
pared to the area resulting from the expert tracing for all images.
The expert area was determined by counting the pixels within
the traced contours. These area errors are also reported as per-
centages of the “true” expert areas.

Errors between the detected contour and the expert contour
were determined using the mean and rms radial distance be-
tween boundaries [27]. Given a seed point, along each of the
radii, the expert contour is found and the distance to the detected
contour point for the corresponding radii is found. This mea-
surement is used to determine mean (MEr) and rms (RMSEr)
errors between true and detected contours.

Errors are presented in pixels in Section VI because scaling
factors were known for simulated images (0.0625–0.0893 mm/
pix), but not for the ultrasound images of patients. However, all
vessel sizes were similar when measured in pixels, and ranged
from pixels along their longest axis for simulated im-
ages, and to pixels for patient images. Because
the intended application allows for a range of scaling factors,
we believe results presented in pixels more accurately represent
the performance of our segmentation method. However, image
scaling factors should be taken into account when interpreting
results for specific cases.

2) Vessel Tracking: The vessel tracking presented in
Section IV was implemented and tested as follows. Three
representative series of ultrasound images of 100 images each,
where a feature from an ultrasound phantom was seen to move
from left to right (a slow (S1), medium (S2), and fast (S3)
step) were acquired and saved for offline evaluation, along with
corresponding location data. The peak speeds were 1.6, 6.9, and
12.6 pixel/frame (1.4, 6.2, 11.2 mm/s at 10 Hz, respectively)
along the axis for the slow, medium, and fast steps, respec-
tively. Movement along the axis was considered negligible.
The center of the features was determined manually, and the
tracking algorithm was used to estimate the vessel centres
using image and sensor data. An error measure was determined
for each image by calculating the distance from the tracked
position to the true segmented position.

TABLE I
OVERALL PARAMETER ESTIMATION RESULTS—SIMULATED IMAGES

Mean (�) and std. dev. (�) of errors for ellipse parameters a, b, and area
compared to �ab (FArea) and expert tracings (EArea). Values of ellipse
parameter �, and mean MEr and rms RMSEr errors between contour and
expert tracing.

The tracking method presented in (1) and (2) in [16] was also
implemented and used as a baseline. This system also uses a
constant velocity model, but the measurement consists of the
current seed location obtained by projecting the previous cen-
troid onto the current image frame. The state estimate is cal-
culated in a single global reference frame. The estimated seed
point was also corrected using the SAD correlation described
above. It was found that this system does not work sufficiently
well, as the seed location was repeatedly lost especially for
faster movements, through the implementation of this model on
a prototype of the DVT system from [23], and motivated the
current tracking model.

The use of the subsampled SAD was also investigated by gen-
erating estimates of the vessel locations using the tracking algo-
rithm from Section IV and three different settings for the SAD
correlation as described in the same section. Errors between the
true positions and tracked positions were calculated as above for
each of the SAD settings. A two-tailed test was used to deter-
mine whether there was any significant difference between the
mean errors obtained from the tracked positions when using the
different subsampled SAD settings.

VI. EXPERIMENTAL RESULTS

A. Contour Detection

In the first validation step a total 999 seed points were gen-
erated from the expert tracings of the 18 simulated ultrasound
images and used as seed points for the algorithm, which was
initialized, as described in Section V-A.I. The number of seed
points per image ranged from 23 to 132, and were at most
pixels from the seed in the direction and at most pixels
from the seed in the direction. Each detected contour was com-
pared to each of the five expert tracings and estimated ellipse
parameters were compared to the known values used to simu-
late the images.

Results are divided into two categories, based on the error
threshold presented in Section III, used to determine invalid
data. The first category uses the value as defined in (10), while
the second category uses a fixed value of six pixels. A valid re-
sult was obtained in 100% of evaluations of the algorithm when
using (10) as the error threshold, and only in 80% of evaluations
when using .

Overall results are presented in Table I, with mean ( ) errors
and standard deviations ( ) for ellipse parameters , , and the
area calculated from (FArea), expressed as a percentage of



1086 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 8, AUGUST 2007

TABLE II
DETECTED ELLIPSE PARAMETERS

Mean (�) and std. dev. (�) of estimated parameters a, b and �, and area from �âb̂ (FArea) compared to true
values, using threshold =

p
1:5 � r .

TABLE III
CONTOUR DETECTION RESULTS – SIMULATED IMAGES, ERRORS PER EXPERT,

Validation threshold =
p
1:5 � r

Mean (�) and std. dev. (�) of error from area compared to expert
tracing (EArea), and mean MEr and rms RMSEr errors between contour
and expert tracing, for each expert (SN = Savvas Nicolaou,VL =
Vicki Lessoway, MK = Maureen Kennedy).

TABLE IV
CONTOUR DETECTION RESULTS—SIMULATED IMAGES, ERRORS PER EXPERT,

Validation threshold = 6

Mean (�) and std. dev. (�) of error from area compared to expert
tracing (EArea), and mean MEr and rms RMSEr errors between
contour and expert tracing, for each expert (SN = Savvas Nicolaou,
VL = Vicki Lessoway, MK = Maureen Kennedy).

the true known value. The mean and standard deviation of is
also included. Also shown are and of the area error when
compared to the expert tracings (EArea), as a percentage of the
area of the expert tracing. Finally, the mean error (MEr) and
the rms error (RMSEr) between the detected contour and expert
tracing are presented. The sign indicates that areas were over-
( ) or underestimated ( ).

It should be noted that the sample number is 5 times the
number of generated seed points for errors obtained when com-
paring the algorithm results to expert tracings (EArea, MEr,
RMSEr), since each detected contour was compared to each of
the five expert tracings.

Table II presents the mean ( ) and standard deviation ( ) of
ellipse parameters and the resulting ellipse area obtained by our
algorithm, compared to the true known values.

The EArea, MEr, and RMSEr errors for individual experts
from the simulated images are presented in Tables III and IV.
Data has been subdivided as described above, with data obtained

when the validation threshold is as in (10) in Table III, and when
the validation threshold pixels in Table IV.

The results of contour detection and parameter estimation on
noisy images are shown in Table V. The same 999 seed points,
as described above were used. The error distributions obtained
from noisy data were compared to those from noiseless images
using a two-sample Kolmogorov–Smirnov goodness-of-fit hy-
pothesis test with a significance level of . While a sta-
tistically significant difference was found for the mean contour
error, MEr (p-value = 0.0388), and the estimated ellipse angle,

(p-value = 0.0409), at SNRs of 30 and 12 dB, results remain
very similar to those obtained from the noiseless data until the
SNR approaches 0 dB. -values for all measures are less than
0.05 when SNR is .

Table VI shows algorithm results from 1375 seed points on
images with and without attenuation. As with noisy data, the
error distributions from both sets were compared to using the
two-sample Kolmogorov–Smirnov goodness-of-fit hypothesis
test with a significance level of . Parameter estima-
tion errors were found to be significantly different (p-values

) from results without attenuation, with error differences
of less than 4%.

The objective of the second validation step was to compare
the results of the feature detection algorithm to the expert seg-
mentation in the patient images. Expert tracings were again used
to generate a total of 564 seed points, and the feature detec-
tion algorithm was again initialized, as described in Section III.
The number of seed points per image ranged from 37 to 144,
and were at most pixels from the seed in the direction
and at most pixels from the seed in the direction. Again,
each contour was compared to five expert tracings, generating

total measurements.
The mean (MEr) and rms (RMSEr) radial distance between

the detected boundaries and the expert boundaries was deter-
mined in pixels, and the differences between expert area and
the area from the estimated ellipse parameters (EArea) was de-
termined as a percentage of the expert area. These results are
presented in Table VII.

As in the first step, the same two validation thresholds were
used for the patient images dataset. Table VIII shows errors for
individual experts when the validation threshold is as in (10)
with a 100% validation rate, and Table X shows errors for indi-
vidual experts when the validation threshold with
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TABLE V
PARAMETER ESTIMATION AND CONTOUR DETECTION RESULTS FOR IMAGES WITH VARYING SNRS

TABLE VI
PARAMETER ESTIMATION AND CONTOUR DETECTION RESULTS

FOR IMAGES WITH ATTENUATION

TABLE VII
OVERALL RESULTS—PATIENT IMAGES

Mean (�) and std. dev. (�)
of error from area compared
to expert tracing (EArea), and
mean MEr and rms RMSEr er-
rors between contour and ex-
pert tracing, from patient im-
ages ranging from 560� 472 to
720� 480 pixels.

TABLE VIII
CONTOUR DETECTION RESULTS—PATIENT IMAGES, ERRORS PER EXPERT,

Validation threshold =
p
1:5 � r

Mean (�) and std. dev. (�) of error from area compared to expert
tracing (EArea), and mean MEr and rms RMSEr errors between con-
tour and expert tracing, for each expert (SN = Savvas Nicolaou,
VL = Vicki Lessoway, MK = Maureen Kennedy).

a 65% validation rate. Examples of the results of the feature
detection algorithm and parameter estimation on simulated and
human data are presented in Fig. 4.

The mean ( ) area values for the patient images are also pre-
sented in Table IX, alongside the standard deviation ( ), the co-
efficient of variation (ratio of standard deviation to mean),
and the “True” expert values, obtained when using a validation
threshold of 6 pixels. The patient images are shown in Fig. 4.
It is observed that the smallest was obtained from a more el-
liptically shaped vessel [Fig. 4(c)]. The largest was obtained

TABLE IX
OVERALL RESULTS, IN PIXELS— PATIENT IMAGES

Mean (�), std. dev. (�) and coefficient of
variation (V ) of estimated area (EArea) com-
pared to True value from expert tracing, using
validation threshold = 6.

TABLE X
CONTOUR DETECTION RESULTS -PATIENT IMAGES, ERRORS PER EXPERT,

Validation threshold = 6.

Mean (�) and std. dev. (�) of error from area compared to expert
tracing (EArea), and mean MEr and rms RMSEr errors between
contour and expert tracing, for each expert (SN = Savvas Nicolaou,
VL = Vicki Lessoway, MK = Maureen Kennedy).

from the image with the smallest feature [Fig. 4(f)], which may
explain the large variation. While is close to the true value,
for this image was the largest of all.

The computation time was on the order of 10 ms for each es-
timation when tested using Matlab on a modern PC and unopti-
mized code. The significance of this is discussed in Section VII.

B. Seed Tracking

The tracking method from Section IV was implemented using
an 80 pixel subsampled SAD, with 1/5 pixels within the mask
(see Fig. 6). The method from [16] was implemented using an
80 pixel mask. The tracking results with errors are presented
in Fig. 8. For slower movements, both implemented tracking
methods are seen to work appropriately [Fig. 8(a)], but for larger
movements [Fig. 8(c) and (d)], only our method with delayed
location measurements can track the seed location, as shown by
the data.

For the subsampled SAD validation, the slow (S1) and
medium (S2) step ultrasound image series were used, and the
algorithm was implemented using a 80 pixel square mask,
using all, 1/2 and 1/5 the pixels within the mask. Typical results
are presented in Fig. 9. The errors between the tracked points
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Fig. 8. Seed tracking results. A seed point was tracked in a (a) slow,
(c) medium, and (d) fast step. Manual segmentation is represented by the solid
line, the previous tracking method by (+) and the method presented herein by
(.), and the x (above) and y (below) coordinates are presented. Errors for the
(b) slow, (e) medium, and (f) fast steps are also shown.

and the true location are presented in Table XI. No statistically
significant difference between the SAD methods was found,
while a reduction in execution time proportional to the number
of pixels used can be clearly observed.

VII. DISCUSSION

It has been demonstrated that the contour detection and pa-
rameter estimation algorithm presented in this paper can iden-
tify ellipse parameters with mean errors ranging from
to , and can detect contours that correspond to expert
tracings. The estimated contour area also correlates to the true
transverse area as determined by the experts, allowing the quick
and parametric calculation of area of elliptical features. Even
when features are slightly nonelliptical, area calculations reflect
true values when using this algorithm, as seen by the moderately
low mean area values in Table X. This may be due to the over-
and underestimation of the ellipse parameters at different loca-
tions on the contour, which result in an ellipse with similar area
to that of the vessel. Furthermore, mean errors between the de-
tected contour and expert tracing are low. Results across experts
also are consistent.

Our method performs well when compared to other contour
detection methods. When comparing the detected contour to ex-
pert tracings, we have obtained a mean error of pixels
with a standard deviation of 2.16 pixels on simulated images,
and a mean error of 1.7 pixels with a standard deviation of
5.17 pixels on patient images. For example, [17] reports a mean

Fig. 9. SAD Validation. A seed point was tracked in a (a) slow and (b) medium
step, using all (+), half (�), and one-fifth the pixels (x). Execution times per
image for the (c) slow and (b) medium step are presented, as well as
(e), (f) respective errors.

TABLE XI
ERRORS AND EXECUTION TIME FOR DIFFERENT SAD SIZES

Mean (�) and std. dev. (�) of errors from tracking a vessel center in
a slow (S1) and a medium (S2) step images series when using all,
half, and one-fifth the pixels in a subsampled SAD mask. Execution
time is also shown.

error of 2.98 pixels with a standard deviation of 3.79 pixels, de-
tecting features ranging from 6.7–10.7 mm and scaling factors
of 0.067 mm/pix, very similar to those in our DVT screening
system. While our method is more variable, the trade-off is
greatly increased processing time, as discussed below. Slightly
better results are obtained as the validation threshold defined
in (10) is lowered. While there is some variability in the results,
by observing the standard deviation in Table I, this should be re-
duced when used in conjunction with a tracking algorithm. Also,
some error may have been introduced into the ellipse parameter
measurements because of the possible “rotation” of the results
if and are switched and rotated by . Additionally, the
result is expressed as a percentage of the true value, yet it can
be seen in Table II that the standard deviation of both and
are quite similar, and are not more than six pixels ( of the
maximum feature dimension). Moreover, our contour detection
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algorithm has been proven to perform reliably over a range of
SNRs, as consistent results were obtained for tissue SNRs be-
tween 40–12 dB. Indeed, statistically significant differences of
all error measures are not found until the magnitude of the noise
approaches the magnitude of the signal ( ). Typical
expected SNRs range from 60 to 40 dB for tissue in -mode
images.

While all results obtained from images with attenuation are
significantly different from those obtained from images without
attenuation, the differences between mean errors are very small
( ), and in the case of the ellipse angle the error is re-
duced. Additionally, the spread of all errors are also reduced.
This variation in parameter estimation is acceptable for the cur-
rent application.

The large variation in can be explained by the two cir-
cular images used ( ), as in these cases can take any
value. When removing these images from the dataset, the mean
value of is with standard deviation of 10.78 , when
using and . This variation can fur-
ther be reduced by taking the mean value of over all , re-
sulting in a mean value of and standard deviation of
5.13 ( , ).

In the DVT screening system presented in [23], results from
the contour detection from the previous frame are used to ini-
tialize the current frame. While this was not included in the cur-
rent validation, it has been observed that the contour detection
is stable over successive frames obtained at the same location.
Future work could include an evaluation of the reliability of the
contour detection with data from previous frames compared to
standard initial conditions.

Even though the transverse area values are variable, the al-
gorithm is still adequate for the intended application, the DVT
screening system described in [20] and [23].

While chronic clots may be more echogenic, younger clots
are more likely to have echogenicity similar to that of blood
[33]. The manner in which clots are located using the CUS
method also supports this observation. The system in which
the contour detection and tracking is implemented is aimed
at screening patients at risk of DVT for new thrombi, not
chronic thrombi, as immediate medical treatment is important
in avoiding DVT complications [33]–[35].

The seed tracking method shows promising results. While
typically template matching has been used to track a feature
over successive frames, we have modified this concept for de-
termining the location of minimum brightness. SAD correlation
has previously been identified as a good method for determining
correlation between ultrasound image data and a mask [22]. Our
method has addressed the issue of high processing time, and
we show that the use of subsampled SAD in conjunction with
the tracking greatly decreases execution time, without any no-
ticeable decrease in tracking accuracy. We have also shown an
improvement over previous tracking systems that use Kalman
filters [15].

The main drawback of this tracking implementation is sen-
sitivity to location measurements. First, location sensor noise
may adversely affect tracking accuracy. Second, because of the
distance from the sensor to the actual image plane location,
small orientation errors may be translated into large errors. Even

so, preliminary results show that the inclusion of location mea-
surements greatly enhances the seed tracking capability of the
system, and any deterioration because of measurement noise is
greatly outweighed by the ability of tracking fast movements.

The authors are aware that the presence of metals has to be
accounted for through calibration of the location sensor (the ul-
trasound transducer shell is made of aluminum). The accuracy
was tested using a qualitative evaluation on known phantoms
and was found to be sufficient for it not to interfere with our
application.

The execution time results for both contour detection and
tracking are encouraging and more than adequate for real-time
implementation. Moreover, our mean segmentation time of

is much lower than other segmentation methods
(for example, [17] reports 0.8 s for 128 128 images, on a
Pentium II 300 MHz computer).

Currently patient movement cannot be accounted for by the
system. This, as well as other sources such as arterial pulse, are
other possible sources of error.

Improvements to the feature detection and tracking algo-
rithm are underway. Since the feature disappears from the
image under compression, it cannot be detected. Therefore,
quick recovery from losing the vein tracking following full
compression is important, in order to avoid frequent operator
intervention for seed initialization. Compounding or averaging
the detected contours may lead to smaller errors and variations.

VIII. CONCLUSION

A vessel segmentation and tracking method for identifying
vessel contours and transverse areas in ultrasound images have
been presented. The vessel segmentation uses an extended
Kalman filter and an elliptical vessel model to determine the
vessel boundary and estimate ellipse parameters for that vessel,
which can be used to quickly calculate the transverse area. A
tracking method, which uses location measurements from a
sensorized ultrasound probe, is implemented using a temporal
Kalman filter to track the vessel location in real-time over
image sequences.

The vessel segmentation and tracking were evaluated using
simulated and patient data, and compared to expert tracings
to determine accuracy. Results are encouraging and the seg-
mentation and tracking have been implemented in a proposed
deep vein thrombosis screening system, currently under clinical
evaluation.
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